Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system
نویسندگان
چکیده
BACKGROUND Biosynthesis of fatty alk(a/e)ne in cyanobacteria has been considered as a potential basis for the sunlight-driven and carbon-neutral bioprocess producing advanced solar biofuels. Aldehyde-deformylating oxygenase (ADO) is a key enzyme involved in that pathway. The heterologous or chemical reducing systems were generally used in in vitro ADO activity assay. The cognate electron transfer system from cyanobacteria to support ADO activity is still unknown. RESULTS We identified the potential endogenous reducing system including ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) to support ADO activity in Synechococcus elongatus PCC7942. ADO (Synpcc7942_1593), FNR (SynPcc7942_0978), and Fd (SynPcc7942_1499) from PCC7942 were cloned, overexpressed, purified, and characterized. ADO activity was successfully supported with the endogenous electron transfer system, which worked more effectively than the heterologous and chemical ones. The results of the hybrid Fd/FNR reducing systems demonstrated that ADO was selective against Fd. And it was observed that the cognate reducing system produced less H2O2 than the heterologous one by 33% during ADO-catalyzed reactions. Importantly, kcat value of ADO 1593 using the homologous Fd/FNR electron transfer system is 3.7-fold higher than the chemical one. CONCLUSIONS The cognate electron transfer system from cyanobacteria to support ADO activity was identified and characterized. For the first time, ADO was functionally in vitro reconstituted with the endogenous reducing system from cyanobacteria, which supported greater activity than the surrogate and chemical ones, and produced less H2O2 than the heterologous one. The identified Fd/FNR electron transfer system will be potentially useful for improving ADO activity and further enhancing the biosynthetic efficiency of hydrocarbon biofuels in cyanobacteria.
منابع مشابه
Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length
BACKGROUND Aldehyde-deformylating oxygenase (ADO) is an important enzyme involved in the biosynthetic pathway of fatty alk(a/e)nes in cyanobacteria. However, ADO exhibits quite low chain-length specificity with respect to the substrates ranging from C4 to C18 aldehydes, which is not suitable for producing fuels with different properties or different chain lengths. RESULTS Based on the crystal...
متن کاملInsights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound
The nonheme diiron enzyme cyanobacterial aldehyde deformylating oxygenase, cADO, catalyzes the highly unusual deformylation of aliphatic aldehydes to alkanes and formate. We have determined crystal structures for the enzyme with a long-chain water-soluble aldehyde and medium-chain carboxylic acid bound to the active site. These structures delineate a hydrophobic channel that connects the solven...
متن کاملEngineering self-sufficient aldehyde deformylating oxygenases fused to alternative electron transfer systems for efficient conversion of aldehydes into alkanes.
Self-sufficient aldehyde deformylating oxygenases (ADOs) from Synechococcus elongatus PCC7942 fused to alternative electron transfer systems were successfully designed, constructed, characterized and used for efficient conversion of aldehydes into alkanes for the first time.
متن کاملProduction of Propane and Other Short-Chain Alkanes by Structure-Based Engineering of Ligand Specificity in Aldehyde-Deformylating Oxygenase
Biocatalytic propane production: structure-based engineering of aldehyde-deformylating oxygenase improves specificity for short- and medium-chain-length aldehydes and enhances the propane generation in whole-cell biotransformations. This presents new opportunities for developing biocatalytic modules for the production of volatile "drop-in" biofuels.
متن کاملWhole‐cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae
Rapid global industrialization in the past decades has led to extensive utilization of fossil fuels, which resulted in pressing environmental problems due to excessive carbon emission. This prompted increasing interest in developing advanced biofuels with higher energy density to substitute fossil fuels and bio-alkane has gained attention as an ideal drop-in fuel candidate. Production of alkane...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2013